Duality Theorem for a Three-Phase Partition Problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general duality theorem for the Monge-Kantorovich transport problem

The duality theory of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel. Our main result states that in this setting there is no duality gap, provided the optimal transport problem is formulated in a suitably r...

متن کامل

Higher-order Duality for a Nondifferentialble Programming Problem. A Converse Duality Theorem

Relative to a general class of nondifferentiable mathematical programming problems we consider a converse duality result with respect to a higher order Mond-Weir dual. AMS Mathematics Subject Classification: 90C29, 90C30, 90C32.

متن کامل

A Partition Theorem for [0,1]

We prove a Hindman-type partition theorem for Baire partitions of [0, 1].

متن کامل

A Partition Theorem

We prove a partition theorem (in the sense of the theorems of Ramsey [3], Erdös-Rado [1], and Rado [2]) which together with a forthcoming paper by Halpern and A. Levy will constitute a proof of the independence of the axiom of choice from the Boolean prime ideal theorem in Zermelo-Fraenkel set theory with the axiom of regularity. Although the theorem arises in logic, it is of a purely combinato...

متن کامل

A Partition Theorem

We deal with some relatives of the Hales Jewett theorem with primitive recursive bounds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 2008

ISSN: 0022-3239,1573-2878

DOI: 10.1007/s10957-007-9266-1